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❖ Gap: Methodology focused; limited theoretical guarantees
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Outline

7

• Introduction to diffusion models

• Conditional models and guidance

• Guiding diffusion models in offline and online settings

• Future directions



Diffusion Model and Guidance



Overview of Diffusion Models

9

Training Inference

Neural networks: U-Net, transformer



Forward Process – Noise Corruption

• Noise corruption process

• The noise corruption

10

Add Gaussian noise



Backward Process – Sample Generation

• Time reversal in distribution

11

• The math (Anderson, 1982; Haussmann and Pardoux, 1986) 

Forward

Backward



Forward and Backward Coupling
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Distribution



Forward and Backward Coupling

Training

where s is parameterized by neural networks 

12

Distribution



From           to 

• Text-to-image generation (Black et al., 2023)

• Protein generation with biochemical properties (Watson et al., 
2023; Gruver et al., 2023)

13
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Conditional Diffusion Models

• Conditioned sample generation for a given label

14

Label

• Diffusion models can handle diverse conditional information, 
e.g., text prompts, partial images, etc.

• The key is to scalably estimate the conditional score

-- More in the survey: M. Chen, S. Mei, J. Fan, and M. Wang. “Challenges and Opportunities 
of Diffusion Models for Generative AI”. National Science Review 2024



Conditional Score and Guidance
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• Abstract the task-specific objective as a reward function f
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Can we learn a conditional diffusion model to 
generate high-reward high-fidelity data?

Offline with Logged Data:
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Off-policy bandit problem 
(Jin et al., 2021; Nguyen-Tang et al., 2021)

with
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A Toy Example

23

• 2D data X with                             for 

• Linear reward
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Insufficient high reward coverage
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Theorem
✓ The sub-optimality satisfies

where                                  for     the data matrix,         , and     is the 
covariance matrix of                          .

Case Study: Subspace Data + Linear Reward

26

❖ Match optimal off-policy bandit learning with representation 
learning (Jin et al., 2021; Nguyen-Tang et al., 2021)

-- Z. Li, H. Yuan, K. Huang, C. Ni, Y. Ye, M. Chen, M. Wang. “Diffusion Model for Data-
Driven Black-Box Optimization”, Major revision at Management Science



Advantages of Offline Generative Opt.

27

Generative optimization in offline:

✓ Off-policy bandit optimality

✓ High-fidelity to subspace structures

✓ Efficiency: no curse of dimensionality

✓ Meta algorithm provably generates samples of high reward 
and fidelity, in nonparametric settings. 

-- Z. Li, H. Yuan, K. Huang, C. Ni, Y. Ye, M. Chen, M. Wang. “Diffusion Model for Data-
Driven Black-Box Optimization”, Major revision at Management Science



Online with Real-Time Feedback:

How can we progressively fine-tune a diffusion 
model to generate max-reward high-fidelity data?
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E.g., reward value, 
reward gradient
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Design

Form of guidance, computation, theoretical guarantees, …

Stochastic control method 
(Uehara et al., 2024; Han et al., 2024; Tang, 2024)
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Interpretation of Gradient Guidance

31

• Gradient guidance                                                             steers 
diffusion model to close a “look-ahead” gap

x t

xT

Anticipated

E[X 0|x t ]

Look-ahead 
Gap

Reward Improve

Naïve gradient               not working
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• The gradient can be found by auto-differentiation

• Coefficient        is a tuning parameter, akin to a step size
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Theorem
Suppose the reward function is concave and L-smooth. Consider 
linear pre-trained score. With high probability, it holds

where               ,      is the mean of generated samples, and         is 
the maximizer of

with      and      the mean and covariance of the pre-training data.

Effective gradient-guided diffusion for optimization:

✓ Linear convergence and intrinsic dimension dependence

✓ Pre-training induces regularization



Algorithm with Adaptive Pre-trained Score
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Global Convergence with Adapted Score

37

Theorem
Suppose the reward function is concave and L-smooth. Consider 
adapting a linear pre-trained score. It holds that

where                              is the global maximum.

Effective gradient-guided diffusion for optimization:

✓ 1/K global convergence

✓ intrinsic dimension dependence

✓ Preservation of subspace structure

-- Q. Ying, H. Yuan, Y. Yang, M. Chen, M. Wang. “Gradient 
Guidance for Diffusion Models”, NeurIPS 2024



Numerical Results

38

• Reward function

• Ambient dimension D = 64; subspace dimension d = 16

Nonadaptive:
regularized maximum

Adaptive:
global maximum



Image Generation

39

• Finetuing StableDiffusion v1.5 model (Rombach et al., 2022) on 
ImageNet



Take-Home Message and Future Directions

40

• We present methods for adapting diffusion models to an 
abstract reward function in both offline and online settings

• In the offline setting, diffusion models enjoy the optimality of 
off-policy bandits

• In the online setting, gradient guidance incorporates real-time 
feedback and enjoys convergence akin to first-order methods

oBeyond real-valued rewards, such as human preferences

oNoisy feedback, such as noisy reward gradients or  
contaminated gradients

oNonconvex nonsmooth rewards



Thank You!
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