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Abstract

Autoregressive models (ARMs) are widely re-
garded as the cornerstone of large language mod-
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Outline

e Introduction to diffusion models

» Conditional models and guidance

* Guiding diffusion models in offline and online settings

e Future directions
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Overview of Diffusion Models

Neural networks: U-Net, transformer
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Forward Process - Noise Corruption
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Backward Process - Sample Generation

e Time reversal in distribution

Noise

Viogpr—+(X;")

Data

t () —@)

T 1

* The math (Anderson, 1982: Haussmann and Pardoux, 1986)

Forward

Backward

d X

d

X

$—

1

——Xdt + dW;

2

1
2

Score Function

~ X +Viogpr_«( X ) dt + dW,

Brownian

Theorem. Let x, be the process descrived by (3.3), and suppose f(-,-) and g(-,+)
are such as to guarantee the existence of the pmbabllny density p(x, r) forty<t<T
as a smooth and unique solution of its iated Kolmog quation. Suppose
fuzther that an r-vector process W, is defined by wy, =0 and

dif =dwi+ p(x, r)zaxr[pm £)g*(x, )] d, (3.10)
and that the forward ;{olmog i iated with the joint process (x,, W,)
yields a smooth and unique solution in t> 1, for plx, W, t) and in t>s=1, for
plx, W, t| Wy, 5). Then

(i) x;and w,— o, are independent for all t =5 = 1,.

(ii) With &, the minimal o-algebra with respect to which x, for s=r and w, for
s =1are measurable, conditions (3.4) and (3.5) hold.

(iii) A reverse time model for x, is defined by

dx, = f(x, 1) dr+g(x, 1) d, @3.11)
where

Fi - e -
Fllag ) =f'(xy 1) o ,)’Zm [p(x, g™ (6w g™ (x4 D). (5.12)
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Forward and Backward Coupling
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Forward and Backward Coupling
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From P(x) to P(x|y)

* Text-to-image generation (Black et al., 2023)

Prompt Alignment: a raccoon washmg dishes

* Protein generation with biochemical properties (Watson et al.,

2023: Gruver et al., 2023)

%10¢ CD melts
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Temperature (°C)
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Conditional Diffusion Models

» Conditioned sample generation for a given label

Noise Data
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y = dog

dX;” = [2X‘_ —I—'Vlong +( X | y)] dt + dW,

Conditional Score Brownian

-- More in the survey: M. Chen, S. Mei, J. Fan, and M. Wang. “Challenges and Opportunities
of Diffusion Models for Generative Al". National Science Review 2024
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Conditional Diffusion Models

» Conditioned sample generation for a given label

Noise Data

) ()@

Conditional Score Brownian

 Diffusion models can handle diverse conditional information,
e.g., text prompts, partial images, etc.

* The key is to scalably estimate the conditional score

-- More in the survey: M. Chen, S. Mei, J. Fan, and M. Wang. “Challenges and Opportunities
of Diffusion Models for Generative Al". National Science Review 2024
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Conditional Score Revisited
* Bayes' rule defines guidance
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. Beyond labels? (Ho & Salimans, 2022; Bansal et al., 2023)
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* Bayes' rule defines guidance
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Role of Guidance I --- To Optimize

» Abstract the task-specific objective as a reward function f
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Role of Guidance I --- To Optimize

 Abstract the task-specific objective as a reward function f
» Guidance is to optimize reward by generating solutions

Reward

dX, = b, X, )dt+ dW, dX, = [b(t, X, )+ G(t, X, )]dt+ dW,
Value : )

< il

" 1
- 4 b(t, X, )= EXt +r1 logpr-t(X, )

High Avg.
Reward

Low Avg.
Reward

Aesthetic Quality
Improved

W ithout Guidance With Guidance 17



Role of Guidance Il --- Preserve Fidelity

* Reward collapse is a common challenge (Ouyang et al., 2022;
Song et al., 2023)
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* Reward collapse is a common challenge (Ouyang et al., 2022;
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snail | 8.59 octopus | 8.35 cheetah | 8.31 hippopotamus | 8.81

-- Figure from Uehara et al., (2024)
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Role of Guidance Il --- Preserve Fidelity

* Reward collapse is a common challenge (Ouyang et al., 2022;
Song et al., 2023)

* Guidance also needs to preserve data fidelity

octopus | 8.82 cheetah | 9.06 hippopotamus | 9.04

757

snail | 9.05

snail | 8.59 octopus | 8.35 cheetah | 8.31 hippopotamus | 8.81

-- Figure from Uehara et al., (2024)
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A Generative Optimization Perspective
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A Generative Optimization Perspective
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Offline with Logged Data:

Can we learn a conditional diffusion model to
generate high-reward high-fidelity data?



Problem Setup: Offline Reward Maximization

* Given a training data set, generate new x

* Training data set
Label

Dunlabel = {ZEj}nunlabel :
l bel
Dlabel — {.CLU,;, Yi = (g;z) 1 Ez}nlabel ' .a -

> €, IS observation noise
> f*is reward function
» x isin a linear subspace
r=Az with AeRP*X? ;R
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Problem Setup: Offline Reward Maximization

* Given a training data set, generate new x

* Training data set
Label

Dunlabel = {Zﬁj}nunlabel :
l bel
Dlabel — {.CL’?;, Yi = (a’/'z) 1 Ez}nlabel ' .a -

> €, IS observation noise

> f*is reward function

» x isin a linear subspace
r=Az with AeRP*X? ;R

J Example: a large collection of unlabeled protein structures;
only a few has measured properties.

Oft-policy bandit problem
(Jin et al., 2021; Nguyen-Tang et al., 2021)
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Meta Algorithm

Label

—— Reward Model
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Step 1: Reward Learning
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Meta Algorithm

Label
— Reward Model

Step 1: Reward Learning
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Step 3: Conditional Diffusion Training
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Meta Algorithm

Label
— Reward Model

Step 1: Reward Learning

ﬁnditional Scm
O—@*O ~ P(- | reward)

1

oiti(;ﬁlzbiffuw

Step 3: Conditional Diffusion Training

Pseudo-label

B

Step 2: Pseudo Labeling

reward = a

@fusion Mo@—l—’ Dnew \

Step 4: Guided Generation
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A Toy Example

» 2D data X with X = [1,0.5]" zfor z ~ N(0, 1)
* Linearreward Y = [1,1] 'z + ¢

Histogram of Training Rewards
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A Toy Example Cont'd: Good and Bad
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Conditional Samples from Diffusion Model

vy = 0.0
=== True support: x> = x1/2
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A Toy Example Cont'd: Good and Bad

Conditional Samples from Diffusion Model
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=== True support: x> = x1/2
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A Toy Example Cont'd: Good and Bad

Conditional Samples from Diffusion Model

y = 8.0
=== True support: x> = x1/2
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A Toy Example Cont'd: Good and Bad

Conditional Samples from Diffusion Model

y = 8.0
=== True support: x> = x1/2
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How Far Are We from The Target Reward

* Let a be the target reward of generation

SubOpt(a) = a — Generated Average Reward
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How Far Are We from The Target Reward

* Let a be the target reward of generation

SubOpt(a) = a — Generated Average Reward

(Reward estimation error) o (Reward distribution shift)

(Conditional diffusion error)
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How Far Are We from The Target Reward

* Let a be the target reward of generation

SubOpt(a) = a — Generated Average Reward

(Reward estimation error) o (Reward distribution shift)

(Conditional diffusion error) o (Diffusion distribution shift)

A Target
Training Diapel
. > Training

Target
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Case Study: Subspace Data + Linear Reward

Theorem
v The sub-optimality satisfies
dl abe . .poly(D, d
Sub0pt (a \/Trace $-1% ) \/ oi('m bel) + min{a, d} - ° PC1>/)6/( )
label T ynlabel

where £, = (X7 X + AI) /nave TOr X the data matrix, A >0, and =. is the
covariance matrix of P,(- | reward = a).

-- Z. Li, H. Yuan, K. Huang, C. Ni, Y.Ye, M. Chen, M. Wang. "Diffusion Model for Data-
Driven Black-Box Optimization”, Major revision at Management Science 26
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Case Study: Subspace Data + Linear Reward

Theorem
v The sub-optimality satisfies

A e I — (T S
- . dloE |

Suprt(a) — 0 (!\/Trace (E;\lza) , \/ Og(’nl b 1) !_I_I I)
[ nlabel I )

where £, = (X7 X + AI) /nave TOr X the data matrix, A >0, and =. is the
covariance matrix of P,(- | reward = a).

“* Match optimal off-policy bandit learning with representation
learning (Jin et al., 2021; Nguyen-Tang et al., 2021)

-- Z. Li, H. Yuan, K. Huang, C. Ni, Y.Ye, M. Chen, M. Wang. "Diffusion Model for Data-
Driven Black-Box Optimization”, Major revision at Management Science 26



Advantages of Offline Generative Opt.

v Meta algorithm provably generates samples of high reward
and fidelity, in nonparametric settings.

~ - . 2
sub0pt(a) = O 0) - my ™ + ra(o) 37

Generative optimization in offline:

v Off-policy bandit optimality

v High-fidelity to subspace structures
v' Efficiency: no curse of dimensionality

-- Z. Li, H. Yuan, K. Huang, C. Ni, Y.Ye, M. Chen, M. Wang. "Diffusion Model for Data-

Driven Black-Box Optimization”, Major revision at Management Science
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Online with Real-Time Feedback:

How can we progressively fine-tune a diffusion
model to generate max-reward high-fidelity data?



From Offline to Online

Guidance
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From Offline to Online

Stochastic control method
(Uehara et al., 2024; Han et al., 2024; Tang, 2024)

Guidance

lefusmn

Model Offline Dnew

Fmetune Online %aluatlon
Gmdance E.g., reward value,
Design reward gradient

@ Form of gwdance, computation, theoretical guarantees, ...
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Gradient Guidance

Definition

In general settings, given a gradient vector g, define gradient
guidance as ,
G(xt,t) = —B(t) - Va, (y — 9" E[Xo|z:])

where 5(t)is some coefficient.
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Gradient Guidance

Definition
In general settings, given a gradient vector g, define gradient

guidance as ,
G(xtat) — _6(t) | th (y o gTE[X()’xt])

where 5(t)is some coefficient.

- Data X is Gaussian. Reward function is linear f(z) =g 'z

* Reward evaluation is noisy
Y=f(x)+e with e~ N(0,0%)

e« Guidance calculation

V log pi(y|zi) = —variance; ' - Vo, (y — g E[Xo|z4])



Interpretation of Gradient Guidance

* Gradient guidance G(z,t) = —(t) -V, (y — gTIE:[XO\a;t])2 steers
diffusion model to close a “look-ahead” gap
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Interpretation of Gradient Guidance

* Gradient guidance G(z,t) = —(t) -V, (y — gTIE:[XO\a;t])2 steers
diffusion model to close a “look-ahead” gap

Reward

Function

Naive gradientV f(x;) not working

. “+«. Targeted

e e = -
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Gradient Guidance Preserves Structure

» Gradient guidance preserves subspace structures, but naive
gradient deviates from the subspace

G(ae,t) = =2B(t)(y — g E[Xo|z4]) - (Vi E[Xo|24]) - g
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Gradient Guidance Preserves Structure

» Gradient guidance preserves subspace structures, but naive
gradient deviates from the subspace

G(ae,t) = =2B(t)(y — g E[Xo|z4]) - (Vi E[Xo|24]) - g
"~

Pre-training
S induces projection

Large Reward
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Implementing Gradient Guidance

* Gradient guidance involves an unknown expectation E[Xy|z]
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Implementing Gradient Guidance

* Gradient guidance involves an unknown expectation E[Xy|z]

 Tweedie's formula (Efron, 2011)
E[Xo|z:] = €/?(x; + (1 — e ?) - score-function(zy,t))
* Implementable gradient guidance

2
Gz, t) = —B(t) - Vg, [y —et/2¢T(z; 4+ (1 —e™!) - pretrain-score(zy, t))}

* The gradient can be found by auto-differentiation
 Coefticient 5(t)is a tuning parameter, akin to a step size
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Gradient Guidance Algorithm

1 _
X = | X 450 (X0, T =)+ G(X[, T — 1) | dt + dW,

! Guided Diffusion | Fine-tuned Diffusion
T e >~ so + G Dy so + Gx
| I
L]
| Pre-trained Diffusion |

A .
.
| B Xo|a) |
.
I I Algorithm 1 Gradient-Guided Diffusion for Generative Optimization
! Gr adient Guidance G 1 1: Input: Pre-trained score network sq (-, -), differentiable objective function f.

~ I 2: Tuning Parameter: Strength parameters 3(t), {yx } /', number of iterations K, batch sizes {By}.
I v ( T]E [X |x ] )2 B ! 3: Initialization: Go = NULL.
1 —_ 4: fork=0,...,K—1do
I Tt y g 0 t I 5:  Generate: Sample 2 ; ~ Guided_BackwardSample(sg, Gx) using Module 1, for i € [By).
' 6:  Compute Guidance:
f + I (i) Compute the sample mean zx == (1/Bx) S5, 2x...
| (ii) Query gradient g, = V£ (2k). , ) )
i Gradient I gr)agg‘g(':f“d'em guidance Gz 11(+, ) = Gross(+, -) via (7), using sg, gradient vector g, and parameters
7: end for

i g —_— v f i 8: Output: (se,Gx).
I ' Module 2 BackwardSample(sy,G)

—— — . ——— L — L — — " — . — . — i — — ] — - — . — . —

R 1: Input: Score sg, guidance G.
Iterate K Times L ey e e
s(ze, t) = sg(xe, t) + Gl 1),
Sample from backward process:

dx; = [%X{‘ +89 (X7, T —t) +6(X, T — t)] dt + di,.

4: Output: z = X[ .
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Convergence to Regularized Optima

Theorem
Suppose the reward function is concave and L-smooth. Consider
linear pre-trained score. With high probability, it holds

f(@a ) — flux) = ML/AN)® - O(d)
where A= O(L) , ik is the mean of generated samples, and 774 , is
the maximizer of 5

_ — 12
Ty =arg max f(z)—llz—fiofg s

with fo and ¥, the mean and covariance of the pre-training data.



Convergence to Regularized Optima

Theorem
Suppose the reward function is concave and L-smooth. Consider
linear pre-trained score. With high probability, it holds

f(@h ) = flur) = ML/ - O(d)

where A= O(L) , ik is the mean of generated samples, and 774 , is
the maximizer of 5
s = — e = anll?
Ty =arg max f(z)—llz—fiofg s

with fo and ¥, the mean and covariance of the pre-training data.

Effective gradient-guided diffusion for optimization:
v' Linear convergence and intrinsic dimension dependence
v’ Pre-training induces regularization



Algorithm with Adaptive Pre-trained Score

Pre-trained Diffusion

|
!
1
!
!
!
!
!
!
1
!
!
!
!
1
!
=

V)
D
Q
£
g
o]
a
g
2
s
S
=

Weighted Fine-tuning

Fine-tuned Diffusion

=Vf

! I

' I

| — K sg, + G

> 0

| : via all past generated data | A k - Dy, .
! I

| | |
! ! 4 | G ] |
! : Weights : Pre-tr‘.::\ined Diffusion i
| : wo | E[Xo|z:] |
| : : !
i : : : Gradient Guidance G |
' | wk— 1 — T = 2 A— .
- : V.. (y — 9 E[Xolz:]) |
v
| ! l 4 !
i | 0 . k—1 : Gradient |

| ;
i I

Iterate K Times

Algorithm 2 Gradient-Guided Diffusion with Adaptive Fine-tuning Module 2 BackwardSample(sg, G)
1: Input: Pre-trained score sg(-, -), differentiable objective function f. 1: Input: Score sy, guidance G.
2: Tuning Parameter: strength parameter 3(t), {yx }+—, » weights {{wx i }i_o} ', number of iterations  2: Hyper-parameter: backward starting time 7.
K, batch sizes { By }. 3: The guidance-based score is computed as
3: Initialize: sq, = sg, Go = NULL.
4: fork=0,--- ,K—1do s(z4,t) = sg(ws, ) + G(z4, 1),
5. Generate: Sample a batch Dy, = {2} from Guided_BackwardSample(sy, ,Gx) (Module 1).
6:  Compute Guidance: Sample from backward process:
(i) Compute sample mean Z, = (1/B) ;.B="1 Zk,i, and query gradient g, = V f(Zx).
(ii) Update sg,, to sg, ,, by minimizing the re-weighted objective (14). PR I S - - 573
(i) Compute G 1 (1) = Groos (:, ) in (7), using s, ,, and g, with parameter g, B(2). W= X e (X T+ 6T = 1) di+ dWe
7: end for

Output: (sg,,Gk). 4: Output: z = X§.




Global Convergence with Adapted Score

Theorem
Suppose the reward function is concave and L-smooth. Consider
adapting a linear pre-trained score. It holds that

i fu) = O (4L /K)
where fa = max [f(z) is the global maximum.

xEesubspace

-- Q.Ying, H.Yuan, Y. Yang, M. Chen, M. Wang. “Gradient
Guidance for Diffusion Models” NeurlPS 2024 37



Global Convergence with Adapted Score

Theorem
Suppose the reward function is concave and L-smooth. Consider
adapting a linear pre-trained score. It holds that

i fu) = O (4L /K)
where fa = max [f(z) is the global maximum.

xEesubspace

Effective gradient-guided diffusion for optimization:
v 1/K global convergence

v intrinsic dimension dependence

v' Preservation of subspace structure

-- Q.Ying, H.Yuan, Y. Yang, M. Chen, M. Wang. “Gradient
Guidance for Diffusion Models”, NeurlPS 2024

37



Numerical Results

* Reward function f(z) = 10 — (' 2 — 3)*
 Ambient dimension D = 64; subspace dimension d =16
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Image Generation

— y=10

Finetuing StableDiffusion v1.5 model (Rombach et al., 2022) on
ImageNet

'fox'

Iteration

Iteration
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Take-Home Message and Future Directions
* We present methods for adapting diffusion models to an
abstract reward function in both offline and online settings

* In the offline setting, diffusion models enjoy the optimality of
off-policy bandits

* In the online setting, gradient guidance incorporates real-time
feedback and enjoys convergence akin to first-order methods

oBeyond real-valued rewards, such as human preferences

oNoisy feedback, such as noisy reward gradients or
contaminated gradients

oNonconvex nonsmooth rewards

40



Thank You!
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